K-doped BaCo0.4Fe0.4Zr0.2O3−δ as a promising cathode material for protonic ceramic fuel cells

نویسندگان

چکیده

Abstract Slow oxygen reduction reaction (ORR) involving proton transport remains the limiting factor for electrochemical performance of proton-conducting cathodes. To further reduce operating temperature protonic ceramic fuel cells (PCFCs), developing triple-conducting cathodes with excellent is required. In this study, K-doped BaCo 0.4 Fe Zr 0.2 O 3− δ (BCFZ442) series were developed and used as PCFCs, their crystal structure, conductivity, hydration capability, characterized in detail. Among them, Ba 0.9 K 0.1 Co (K10) cathode has best performance, which can be attributed to its high electron (e − )/oxygen ion (O 2− )/H + conductivity uptake capacity. At 750 °C, polarization resistance K10 only 0.009 Ω·cm 2 , peak power density (PPD) single cell close 1 Wcm −2 there no significant degradation within 150 h. Excellent durability make a promising material PCFCs. This work provide guidance improving capability oxides, great significance PCFC performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing novel triple phase conducting composite cathode for high performance protonic ceramic fuel cells

A key obstacle to practical operation of protonic ceramic fuel cells (PCFCs) is the development of high efficient cathode materials. In this study, we report the identification of Gd0.1Ce0.9O2-d (GDC) infiltrated PrBaCo2O5þd (PBC) e BaZr0.1Ce0.7Y0.2O3-d (BZCY) materials as a novel triple phase (e /Hþ/O2 ) conducting composite cathode of PCFCs. This triple phase conducting composite cathode is c...

متن کامل

Sintering Behavior of Porous Nanostructured Sr-Doped Lanthanum Manganite as SOFC Cathode Material

The fuel cells are distinguished as generating of green allocable energy and are electrochemical devices of low environmental impact. Porous nanocrystalline strontium-doped lanthanum manganite La0.8Sr0.2MnO3 (LSM) cathode materials were prepared by mechanochemical route in various grinding times. Carbon black was employed to produce pores. The formation of LSM single phase was studied by X-ray ...

متن کامل

Preparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts

Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...

متن کامل

High Pt Loading on Polydopamine Functionalized Graphene as a High Performance Cathode Electrocatalyst for Proton Exchange Membrane Fuel Cells

Morphology and size of platinum nanoparticles are a crucial factor in improving their catalytic activity and stability. Here, we firstly report the synthesis of high loading Pt nanoparticles on polydopamine reduced Graphene. The loading concentration of Pt (nanoparticles) NPs on Graphene can be adjusted in the range of 60-70%.With the insertion of polydopamine between Graphene oxide sheets, sta...

متن کامل

Nitrogen-doped magnetic onion-like carbon as support for Pt particles in a hybrid cathode catalyst for fuel cells

Pt and non-precious metal catalysts were combined to build a hybrid cathode for fuel cell application, with the aim of dramatically reducing the amount of Pt and increasing the overall catalytic performance. An active nitrogen-doped magnetic onion-like graphitic carbon material (N-Me-C) was synthesized by pyrolyzing a hexamethylene diamine-Me (Me: Co and Fe) complex. The N-Me-C materials proved...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Advanced Ceramics

سال: 2022

ISSN: ['2227-8508', '2226-4108']

DOI: https://doi.org/10.1007/s40145-022-0662-7